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DYNAMIC FEATURES OF A SPHERICAL GAS BUBBLE IM FLUID
V.K. Kedrinskiy

ABSTRACT: An analysis is made of aspherical gas
bubble in both compressible and incompressible
fluids. The movements of the bubble wall are
analyzed in relation to pressure waves and con-
ditions imposed by an incompressible fluid.

The sphertical symmetry of pulsations in a com-
pressible nonviscous fluid is examined.

Most of the problems related to the dynamics of a fluid which /120
contains gas bubbles are essentially concerned with the character
of the pulsation of individual bubbles. An additional pressure
field, determined by these pulsations, has a decided effect on the
general state of the bubble medium in many cases. We will be con-
cerned below with certain features of the pulsation of a spherical
gas bubble in compressible and incompressible fluids,

(1) The movements of spherical bubble walls in an incompres-
sible liquid, without considering the viscosity, is determined by
the following question:
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Here P(R) is the pressure inside the bubble, P(t) is the ap-
plied pressure, p is the density of the fluid, R is the radius of
the bubble; the dot signifies the total time derivative. When P(t)
= const and the bubble is contracted adiabatically, we can easily
obtain the followﬁng from (1.1):
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(where Yy is the adiabatic characteristic, R, is the minimum radius
for the -density, Ry is the original radius, Py is the original
pressure in the bubble). We can also determine the time for densi-
ty contraction in the same way:
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But we usually should be concerned with the pressure, which

*Numbers in the margin indicate pagination in the foreign text.



depends substantially on the time. In this case, we cannot deter-
mine either the time or the degree of contraction of the bubble
directly from (1.1).

The results of a numerical solution to (1.1) in dimensionless
form are given in [1]:
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Here u is the dimensionless parameter which determines the re-
lationship between the time constant for pressure decrease and the
characteristic time for bubble contraction by a constant pressure
Pyp. The calculations were made for the case of waves with an expo-
nential profile of 4 = 10, 100, and 1000, during a change in wu
from 0.01 to 1000. The analysis showed that the pulsation of a
bubble affected by a pressure with various 1 complies with a defi-
nite rule
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Here t2® is the unknown time for bubble contraction for waves
with T2 in an unknown t;% for a wave of the same amplitude but with
11 (the pressure at the front of the wave results in the following
equation for t;*). The index k is determined from the condition,

T (2.5)

S AU |

As we can see from (1.4), the relationship among the times
for bubble contraction in pressure waves with various t with an
accuracy up to a constant coefficient is determined by the square
root of the relationship for the parameters u which are character-
istic for these waves. Equation (1.4) gives us the possibility
(for example, knowing the time for bubble contraction by a wave
with constant pressure at the front) to determine the time for com-
Pression of this bubble by a wave with the same amplitude but with
very small t, and uj; is chosen so that it satisfies (1.3).

Another characteristic for the pulsating bubble is the mini-
mum contraction radius. The relationships between the minimum
radius, the amplitude of the pressure, and the characteristics of
a constant pressure wave can, by analogy with (1.2), take the fol-
lowing form:
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We can see from this that, for u +~o, i.e. for waves with a
constant pressure at the front, this expression is the same as in
(1.2).

The calculations for various A and u(Rj 1 cm) according

to (1.4) and (1.6) are given in Tables 1 and 2, where they are com-
pared to the data in [1] (the results of machine calculation are
given in Table 1, and the results of calculations according to (1.4)
and (1.6) are given in Table 2). The relationships obtained in
(1.4) and (1.6) are very useful for approximate estimations of the
principal characteristics of the bubble pulsation in an incompres-
sible fluid affected by a pressure which changes greatly with time.
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(2) A limit to the problems on bubble pulsation in rafts of
an incompressible fluid results in significant divergences from the
actual characteristics of pulsation to the calculated ones if we
examine the cases in which the walls of the cavities reach veloci-
ties on the order of the sound velocity. The latter takes place,
for example, in the problems of cavitation and the phenomena accom-
panying it. The theory of collapses in hollow bubbles during its
very first formulation led us to conclude that it is necessary to
consider the contractability, in view of the large values for velo-
cities and pressures obtained as a result of the burst. The con-
traction of gas-filled cavities affected by great pressures is al-
so observed in the same way. Let us examine the spherically sym-
metric problem of a gas bubble pulsation in a compressible viscous
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fluid. We will replace the velocity of the particle y(1) by the
slope of the velocity potential ¢, and we will write the equations
thus:
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Here P is the pressure, p is the density of the fluid. Inte-
gration of (2.1) gives
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if h is the difference in enthalples between point » and infinity.
We will assume that P_ at infinity is constant, that the velocity
and the potential of velocity at infinity disappear, and that p is
a function only of pressure. Using

'

o t r I
L v:;‘/(‘-7)_4 (2.3)

the equation can be written in this way
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R EFUUY = -0 (2.4)
Equations (2.4) and (2.5) show that r¢ and r(a + LU?) in an /123

acoustic approximation expand with the velocity C (local sound velo-

city). On the basis of the fact that the velocities of the fluid

can reach values on the order of the sound velocity, Kirkwood [2]

made an assumption as to the propagation r(h + %U2) at a velocity

C + U. On the basis of these assumptions we will write [3, 4]:
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Opening (2.5) by using
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we will obtain the rule for movement of the gas bubble wall
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However, we must explain to what degree (2.7) agrees with the
precise equations for the flow (2.1). It is obvious that for a
more complete determination of the possibilities in Kirkwood's as-
sumption, we must examine the case of contraction for a hollow
cavity, which entails examining the behavior of the function ob-
tained in a large range of velocities for the cavity walls (from
0 to ).

A numerical integration of (2.1), made by Kanter [5] for a
spherically symmetrical hollow cavity in water, showed great velo-
cities for flow near the collapsing point. It was found that the
cavity radius in this case is proportional to (-t)” (¢t = 0 is the
moment of collapse). The flow in the areas surrounding the col-
lapsing point is described by a self-similar solution from which
the value for n is determined. The value for n was found equal to
0.5552 in [5, 6]1. Writing (2.7) for the case of a hollow cavity
(i.e. assuming that C = const and H = const), we obtain
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Substituting Kanter's solution [5] in the form of R ~ At"
into (2.9), we can easily obtain the value of n for £ - 0. It is



equal to 0.666, And for the case of a nonviscous fluid, n = 0.4,
i.e. the behavior of the cavity wall in the areas surrounding the
collapsing point is as far from Kanter's results as in the nonvis-
cous case. Repetition of the arguments mentioned above for the
acoustic case results in
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which in the case of a hollow cavity gives the value n = 0.5, i.e.
an accurate solution lies between the acoustic and Klrkwood's cal-
culation. We should note that (2.10) is none other than Hering's
equation [2], although the latter was obtained by a method other
than the one described above. From the values obtained for »n we
can conclude that the velocity of expansion for the value of r(h +
U2/2) lies between C and C + U. We will assume that the expansion

occurs with a velocity ¢ + al, where a = const. In this case we
have
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Substituting R = At9°555 into this, we can easily obtain the
value for o in the areas surrounding the collapsing point (at an
infinite wall velocity). It is equal to 0.57. An analysis of the
behavior of (2.11) for various R/C showed that, in a certain approx-
imation (we found «, corresponding to Kanter's curve, for each mo-
ment), a will be a monotonically decreasing function of R*/C, which
changes its value from 1 to 0.57 when R + 0. However, this does
not exclude the possibility for an approximate description of the
collapsing process by using a certain constant value for a. We
must note that (2.11) is fairly adequate, since for various a, it

can be converted into Kirkwood's equation (¢ = 1), an equation with
acoustic approximation (a = 0), or any intermediate term.
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The following data are given in Table 3:

(1)
(2)

equation:

(3)

(5)

Numerical integration of the flow- and Kanter~ equations;
Calculation with Kirkwood's assumption according to the

- * —d (2.12)
Calculation of the acoustic variation
(By. A#'E'-:".T\?“&’ R' _;’;" ;{. "7

Calculation for assuming an expansion with velocity C +

e 210
(EMERN ST
Calculation for a nonviscous fluid
a R -’
(%)“-[n%&’,(%)’}_j (2.15)

The dependence of the value for

R*/C on R/Ry, plotted according to the
data of the table is shown in Figure 1.
As we could easily note, Kirkwood's as-
sumption agrees with the actual values
for R°/C on the order of 1 and less [71],
and simply does not agree for greater

velocities, This is very natural if we
consider that the velocity € + U is valid
for the plane case. The acoustic varia-
tion also differs rather substantially
from Kanter's curve, and in the range




for R*/C from 1 to 10 it differs even more from precise data than
Kirkwood's curve. An introduction of the conditional coefficient
¢ into the velocity of the expansion allows us to make certain es-
timations on the behavior of the value for C + U as the velocity
of the bubble wall increases.

Taking the result obtained into account, we calculated the
pulsation of a spherical bubble with a diamter of 1 cm affected by
a suddenly-induced constant pressure whose amplitude changed from
10 to 18000 atm. An air bubble was examined for an original pres-
sure of 1 atm. The calculation was made on a computer according
to (2.7). The equation for the state of the water was considered
according to [2]. The calculation results are given in Figure 2.
The numbers correspond to amplitude of pressures in atm - 18000,
9000, 3000, 1000, 800, 600, 400, 200, 100, 80, 60, 40, 20, 10. The
dotted line connects all the first pulsation minima. We can easily
find from the graph that R*/Ry is directly proportional to the time
for contraction of the cavity

£ R‘IH.-A:, +oo.s} (2.16)
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The contraction time ¢# is rather accurately determined by
(1.3), and 4 = 5/3 103 sec-l is easily found from the graph.

Certain experiments were conducted in a hydrodynamic shock
tube by determining the pulsations of air bubbles at pressures of
several hundred atmospheres with a weakly-changing pressure on the
surface. The method for conducting the experiment and a descrip-
tion of the arrangement are given in [8], and the characteristic
time-rebound of a bubble pulsation is also given there. The data
on the degree and time of contraction correspond to the calculated
values. :



In conclusion, the author would like to express his gratitude
to L. Trokhan for his substantial aid in the computer calculations.
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